
Supporting Information

Sonification-enhanced lattice model animations for teaching the protein folding reaction

Carla Scaletti,1* Meredith M. Rickard,2 Kurt J. Hebel,1 Taras V. Pogorelov,2,3,4,5,6 Stephen A. Taylor,7 and
Martin Gruebele2,3,5,8*

1Symbolic Sound Corporation, Champaign, IL 61820, United States; 2Department of Chemistry, University of Illinois
at Urbana-Champaign, IL 61801, United States; 3Center for Biophysics and Quantitative Biology, University of
Illinois at Urbana-Champaign, IL 61801, United States; 4School of Chemical Science, University of Illinois at
Urbana-Champaign, IL 61801, United States; 5Beckman Institute for Advanced Science and Technology, University
of Illinois at Urbana-Champaign, IL 61801, United States; 6National Center for Supercomputer Applications,
University of Illinois at Urbana-Champaign, IL 61801, United States; 7School of Music, University of Illinois at
Urbana-Champaign, IL 61801, United States; 8Department of Physics, and University of Illinois at Urbana-
Champaign, IL 61801, United States

Corresponding author emails: Martin Gruebele mgruebel@illinois.edu; Carla Scaletti carla@symbolicsound.com

Contents of this PDF:

1. Links and captions for videos: lattice model animations with data-driven sound
2. Method for implementing the lattice model in software
3. Step-by-step sound-mapping examples
4. Example homework and solutions
5. Survey instruments used in the PHY 498 and MUS 208 courses to assess student response

Sample lecture slides are provided in a separate PDF file.

1. Videos: lattice model animations with data-driven sound
For best results, please select video quality HD1080 in the YouTube settings, and listen with stereo headphones or
speakers.
• Video S1.1 is a sonification/visualization of the 4-bead lattice model shown in Figure 2 whose

transition matrix is given in Figure S2.1.

• Video S1.2 An unevolved 6-bead chain where 2 and 6 are hydrophobic shows a ‘glassy’ or unevolved

energy landscape that cannot fold into a single native state (See Figure 5 and “Unevolved sequence” in
the Results section).

• Video S1.3 Beta hairpin, a 6-bead chain where 2 and 5 are hydrophobic, shows a 4-level energy
landscape with a single, lowest energy state (See Figure 6A and “Beta hairpin” in the Results section).

• Video S1.4 Alpha helix, an 8-bead chain with hydrophobic elements in positions 2 and 7 shows a
smoother energy landscape funnel. (See Figure 6B and “Alpha helix” in the Results).

• Video S1.5 WW domain, a 9-bead chain with hydrophobic residues in positions 2, 5, and 8, shows a 10-
level energy landscape with multiple ‘traps’ or local minima.

• Video S1.6 WW domain animation and sonification where the radius of gyration (Rg) is mapped to
frequency: the more compact the conformation, the lower the frequency. (See Figure 7 and discussion
in Results).

• Playlist S1.7 is a collection of videos that can be used in conjunction with the sample lecture slides (see
SI External File 6 Sample lecture slides with comments).

• Playlist S1.8 contains the videos that our students used in order to answer the homework questions (see
SI Section 4 Example homework and solutions)

S-1

https://youtu.be/OySGX4fyUNY&vq=hd1080
https://youtu.be/MqmSF4bEfc4&vq=hd1080
https://youtu.be/jyceKmdBtUI&vq=hd1080
https://youtu.be/nL_RfL3luwI&vq=hd1080
https://youtu.be/JmdRCYXzMks&vq=hd1080
https://youtu.be/S1q6RJKaNyQ&vq=hd1080
https://youtube.com/playlist?list=PLH4h_bmmkiMsC_82VMj-EiJHxbc1BA1IH&vq=hd1080
https://www.youtube.com/playlist?list=PLH4h_bmmkiMuSxL-WLMnnsMhSXKtJmwCE&vq=hd1080

• Video S1.9 Using sound to track the formation of native vs non-native bonds in the 9-bead WW lattice
model

• Video S1.10 WW domain model showing a temperature-dependent bias as to which states are more
likely to be visited

• Video S1.11 WW domain model’s traps and intermediate states

• Video S1.12 Beta hairpin model’s traps and intermediate states. (Starts at a low temperature, then jumps

up to a high temperature about halfway through the video).

• Video S1.13 Sonification of a simple coin-toss that is either fair, biased toward Heads, or biased toward

Tails

• Video S1.14 Coin-toss with an unknown bias

• Video S1.15 Beta hairpin model running at a high temperature (and using a sound-mapping similar to

the one used in coin toss to facilitate comparisons)

• Video S1.16 Beta hairpin model running at a low temperature

• Video S1.17 Beta hairpin model at the ‘folding temperature’, Tm where the temperature at which the

likelihood of being in the folded state at the bottom of the funnel equals the likelihood of being in an
unfolded state (the ensemble of unfolded structures).

• Video S1.18 Beta hairpin model at an unknown temperature. Is the temperature above or below Tm?

• Video S1.19 A visualization/sonification of Rg vs. time (vertical axis units are Å, horizontal axis units

are µs.) The complete folding process of WW domain was calculated by M. Rickard et al., using the
CHARMM22* force field in an all-atom fully solvated molecular dynamics simulation (see citation to
Rickard, M. M.; Zhang, Y.; Pogorelov, T. V.; Gruebele, M. Crowding, Sticking, and Partial Folding of
GTT WW Domain in a Small Cytoplasm Model. J. Phys. Chem. B 2020, 124 (23), 4732–4740. https://
doi.org/10.1021/acs.jpcb.0c02536 used in sample homework problem f, described in the main text).
WW structures are shown on the right. The pitch you hear corresponds to Rg (higher pitch = higher Rg).
Rg is also mapped to pan position. The standard deviation, σRg, is mapped to the timbre of the sound and
to the color of the trace on the left. VMD visualization (on the right) rendered by M. Rickard.

• Playlist S1.20 The same sound mapping (described in SI section 3) applied to several different lattice
models

2. Method for implementing the lattice model in software
2.1 Representation of proteins on a lattice

A conformation is represented in Kyma as a string of directions, starting with the first bond pointing
!up’,"and successively labeling each joint (angle between two bonds) as 90° to the left (L), 90° to the right
(R), or straight ahead (S). Transitions between conformations can be represented by a transition
probability matrix (Figure S1). For example, if a flip from ‘SL’ to ‘LL’ is randomly chosen in Figure 2, it
is accepted with probability 1 because it is downhill in energy.

Conformations that can interconvert via 2D rotation are not double-counted, as shown by the crossed-
out configuration in Figure 2. In a more stringent version of the model, configurations accessible via 3D
rotations can also be excluded, (this would eliminate one of the L-shaped conformations in Figure 2), and
the bead at one end of the chain (e.g., the ‘N-terminus’ in a real protein) can be distinguished from the
other end of the chain (see discussion of Figure 6).

This simple model, with only two amino acid types, is suitable only for small proteins: for large
proteins, there is a high probability of contacts not being consistent with a single minimum energy state.
At least 6 different amino acids (beads) are needed to define real protein structures uniquely,32 but we
stick with 2 here for simplicity.

S-2

https://youtu.be/SBwr7ScTg9w&vq=hd1080
https://youtu.be/MIO2LEN5Ic0&vq=hd1080
https://youtu.be/6T0XaoL5TWU&vq=hd1080
https://youtu.be/_FZsi1Ibziw&vq=hd1080
https://youtu.be/zGcPIZy_mnI&vq=hd1080
https://youtu.be/e8yeLEX14lk&vq=hd1080
https://youtu.be/omCV7lQNa2Y&vq=hd1080
https://youtu.be/RvDSre0ZyR0&vq=hd1080
https://youtu.be/dPGOhqa2UD8&vq=hd1080
https://youtu.be/R-EWEZawxvk&vq=hd1080
https://youtu.be/FmL6pDczK1o&vq=hd1080
https://doi.org/10.1021/acs.jpcb.0c02536
https://doi.org/10.1021/acs.jpcb.0c02536
https://www.youtube.com/playlist?list=PLH4h_bmmkiMsvMiRY87vDaohzUP-7ryli&vq=hd1080

2.2 Implementing the lattice model of protein dynamics as a state machine

• A lattice protein object (written in the Smalltalk programming language) which, given the number of

beads, positions of the hydrophobic beads, and the energy (ε or ε’) of each bond type, enumerates all
allowed conformations, removes redundant conformations, and computes the allowable, energy-
weighted transitions between conformations. Once initialized, the protein lattice object can create a
state machine (specified as a formal grammar) and generate a CSV file where each row corresponds to
one conformation’s “observables” (see Definitions of observables below). A protein lattice object can
also generate an image for each conformation and for each state of the energy funnel, as well as respond
to other queries (for example, it can return a list of the traps and the shortest path(s) from any state to
the folded state).

• Given the grammar generated by a lattice protein object, a PushDownAutomaton object in Kyma
can generate a (non-terminating) sequence of conformations in real time, allowing for user interaction
while the state machine is running; for example, you can change the temperature, change the sound
parameters, pause the simulation, or set a different initial state.

• The values of the calculated observables are mapped, in real time, to the parameters of a sound
synthesis or processing algorithm, by an IndexedEventsFromData object which also displays the
animation frame for that conformation.

• The conformations of the 4-bead example (Figure 2 in the main text) define a ‘finite state machine’
coded in Kyma. The transitions that take the model protein from one conformation to the next can also
be described by a transition probability matrix (Figure S1) to highlight the equivalence of the finite state
machine to a Markov chain: a Markov chain is a series of events at time t, t+Δt … such that the next
state depends only on the current state and a randomly generated number, and not on the history of
previous states.

• Visually, the state machine is represented as a graph G = (V, E) such as that shown in Figure 2 of the
main text, where each vertex or node, V ∈ {LS, SL, RL, SS, LR, LL}, corresponds to one conformation,
and each edge is an allowable, weighted transition from one shape to another in the state space. The
transition probability matrix is not symmetrical, so the weight is different depending on the direction of
the transition. For example, the transition from LL to LS has probability B/(2B+1) where B = exp(-ΔE/
RT), whereas from LS to LL, the probability is ¼.

Figure S1. The transition probability matrix for the four-bead system in Figure 2. Note that if two states can
interconvert in two different ways (e.g. SS can go to SL by kinking the upper bond left, or the lower bond
right plus a rotation by 180°), a weight of 2 is assigned. If a move increases the energy, then a Boltzmann
weight B=exp(-ΔE/RT) is assigned, where ΔE is the positive energy difference in kJ/mole, and RT is
temperature converted from Kelvin to units of energy. The actual probability is obtained by dividing the entry
by the sum of its row. For example, the probability of going from LL (folded state) to SL (one kink at the
end) is B/(0+B+0+B+0+1)=B/(2B+1).

SS SL RL LS LR LL

SS 1 2 0 2 0 0

SL 1 1 1 0 0 1

RL 0 2 1 0 0 0

LS 1 0 0 1 1 1

LR 0 0 0 2 1 0

LL 0 B 0 B 0 1

S-3

On each time step, a new conformation (corresponding to a unique row of the CSV file) is selected by
the PushDownAutomaton according to the current conformation, the likelihood of a transition from
the current conformation to all other allowable conformations, the current temperature, and a random
number.

Definitions of observables O = (E, Rg, dee, Q):

• The total energy E of the conformation, which depends on the number and type of bonds present

• The radius of gyration Rg, defined as the square root of the sum of the distances squared between each

bead and the center of the shape; the ‘mass’ of each bead is assumed to be the same.

• The end-to-end distance dee, also labeled ‘E2E’ in some videos, from the first bead to the last bead

• The fraction of native contacts Q, ranging from 0 (unfolded) to 1 (folded) defined as the ratio of the

number of native contacts in a conformation divided by the number of native contacts in the native
state. In the lattice model, a ‘native contact’ is when two dark beads (hydrophobic amino acids) or two
light beads (hydrophilic amino acids) are adjacent to one another as they should be in the native (lowest
energy) structure.

Beta hairpin model: further details. The state space for this 6-bead beta hairpin model, like the 4-bead
example, is generated by taking the space of all 34 = 81 possible conformations, removing any
conformations that overlay beads, that are rotations of another conformation in the 2D plane, or that are
equivalent under order-reversal. One can also enforce a preference for chirality (e.g., every chain begins
as either a straight or as a right turn), resulting in a state space of 22 shapes and a 4-level energy
landscape.

Alpha helix model: further details. As with the 4-bead and beta hairpin models, we start by taking the
space of all 36 = 729 possible combinations of left, right, or straight angles at each joint, remove any
conformations that cross themselves or that are rotations of another conformation in the 2D plane. To
mimic chirality in actual proteins, we allow only the right-handed variant of each shape. To mimic the N-
and C- termini of actual proteins, in this model, we do not consider the first and last beads to be
equivalent, so we do not remove shapes that would be equivalent under order-reversal of the beads. After
this pruning, there are 272 shapes left. Since alpha-helical peptides form near-optimal linear hydrogen
bonds, we give only the helical hydrogen bonds ε=1 kJ/mole.

WW domain: further details. There are 740 shapes in the state space and 10 discrete energy levels in
the energy landscape of the WW domain in our lattice model.

3. Step-by-step sound-mapping examples
This section describes some of the ways in which the observables of a lattice model were mapped to

sound parameters.  

S-4

3.1 WW 9-bead example Figure S2 shows an overview of the Kyma signal flow graph that generates
the sound for Video S1.5, a 9-bead lattice model of the WW domain. (You can hear examples of this
sound mapping applied to several different lattice models in Playlist S1.20.)

 In a Kyma signal flow graph, the audio signal flows from left to right, and each icon represents a
signal synthesis or processing algorithm or a meta-module that constructs a more complex graph.

The left half of the signal flow is shown in Figure S3: a phase-modulated oscillator whose frequency,

modulation index, amplitude, stereo spread and reverberation can be controlled in real time by data.

In Figure S3, the module labeled ‘energy + entropy’ computes the sum of two sinusoidal oscillators

whose frequency is controlled by the same free variable, !Harmonic. The oscillator labeled ‘energy
phase modulated (Entropy ->MI)’ on the upper branch is phase-modulated by the oscillator labeled
‘entropy’; the modulator’s frequency is one octave below the carrier oscillator’s frequency

 !Harmonic * 0.5

and its amplitude is !Brightness.

An exponential AR (an amplitude envelope shape multiplied by its input) is applied to the phase-
modulated oscillator and a linear AR is applied to the unmodulated oscillator. Both amplitude envelopes
have free variables !Attack and !Decay (time in units of seconds) and !Gate, a momentary switch
which, when it changes from 0 to 1, triggers the attack portion of the envelope and holds it at unity gain
until it changes from 1 to 0, when it enters the release portion of the envelope. The sum of the two
oscillators is attenuated by the expression

0.5 * !Amp

Figure S2. A signal flow graph for the 9-bead WW model.

Figure S3. Sound synthesis and processing signal chain for two amplitude-enveloped oscillators, one of
which is phase-modulated, followed by further processing to control the stereo spread.

S-5

https://youtu.be/JmdRCYXzMks&vq=hd1080
https://www.youtube.com/playlist?list=PLH4h_bmmkiMsvMiRY87vDaohzUP-7ryli&vq=hd1080

A pseudo-stereo signal is created by phase-shifting the right channel by 90 degrees (relative to the left
channel) using a HilbertTransform. The module labeled ‘MID SIDE Stereo Spreader’ separates its
stereo input into two components: Mid (the part that appears in the middle of the stereo image) and Side
(the part that appears on the sides of the stereo image). With this module you can apply processing to the
Side, the Mid, or both (with independent controls on Mid and Side processing) prior to recombining Mid
and Side to form the left and right channels of a standard stereo signal. In this example, reverberation is
applied only to the Side signal, and the amount of Side signal added to the mix is controlled by a free
variable, !Spread.

At this point in the signal flow graph, we have seven real-time controls that can affect the sound: !
Spread, !Amp, !Gate, !Attack, !Release, !Brightness, and !Harmonic. These controls
can be mapped to widgets on a virtual or physical control surface, or they can be mapped to values read
from a data file.

Using a module called IndexedEventsFromData, you can specify which data variable values
should be mapped to which of the live controls; any Realtime controls that are not mapped to data
variables are still controllable from a virtual or physical control surface. The blue-highlighted module in
Figure S4 is an IndexedEventsFromData with its parameter fields shown on the right.

 In DataFilters, you can create a modified virtual copy of the file specified in DataFile and use it as

part of the mapping; in this example, we are adding a new column, ‘Entropy’ defined as the log base 2 of
the value read from another column in that same row: ‘StatesAtEnergy’.

A row of the file is selected using !Index and each time this module receives a !Gate, it also
generates the real-time control named in GeneratedGate. (The same name was used for the incoming and
the generated gate variables, but they are independent of one another).

In MappingFunctions you can list the name of a Realtime control followed by a block of code
specifying how to map the value from a column in the currently selected row of the file to that real-time
control. For example, the first line of the MappingFunctions is:

(!Harmonic [:currentRow | (currentRow valueOfColumn: 'Energy') * 4 + 1 * !Pitch.base nn hz])

which means: read the value of column ‘Energy’ in the current row, multiply it by 4, add 1 and multiply
the result by another real-time control, !Pitch.base, in units of linear frequency (Hz), and use the
resulting value for the real-time control !Harmonic everywhere it appears in the modules to the left.

Figure S4. An IndexedEventsFromData accesses a data file row by number (the index) and can read
the value from each column of that row by name or by column number. These values can be mapped to the
realtime controls of the modules to the left of this one in the chain.

S-6

The mapping:

(!AmpDB [:currentRow | (currentRow valueOfColumn: 'Entropy') negated])

takes the value of the newly created column ‘Entropy’, negates it, and uses that as an amplitude value.

The value in the column ‘Entropy’, normalized to [0,1], is mapped to a realtime control !

EntropyOfState by the statement:

(!EntropyOfState [:currentRow | (currentRow min0Max1ValueOfColumn: 'Entropy')])

In the ImageConstructors field, the first statement creates a “movie” of the changing conformations by
using the current index to select and display a precomputed frame of the animation. The folding funnel
graph animation is created in the same way, by indexing into a list of pre-computed frames of the
animation.

The current index (!Index) controls which row of the data file to map to sound parameters and
which frame of the animation to display, and each time it changes, it also emits a !Gate for the modules
to the left of the IndexedEventsFromData. But where does !Index come from?

The rightmost module in Figure S2, an instance of PushDownAutomaton, generates a sequence of
state numbers (!Index) in real time, allowing for user interaction with the sound and model parameters
while the state machine is running. The state transition rules for this lattice model are encoded as a
production rule specifying how you can leave a source state, emit a token, and transition to a destination
state:

StateVariables -> (terminal StateVariabled) {weight1}.

Since each micro state can transition to itself, the first few rules specify self loops; for example, the
rule:

SSSSRLR -> (t_9_1111020 SSSSRLR) {1}.

specifies that, if you are in state SSSSRLR, you can output the terminal token t_9, and take the self-loop
transition back to state SSSSRLR with probability {1}. Other rules (not visible) give the probability of
SSSSRLR transitioning to other states, and the probability of transition to each of the possible destination
states is the weight of that rule divided by the sum of all possible transition weights from state SSSSRLR
(See Figure S5 for an example).

S-7

Figure S5. A PushDownAutomaton generates a sequence of values for !Index based on state transition
rules encoded as a grammar.

Hiding the contents of the ProductionRules field (Figure S6) reveals more of the
PushDownAutomaton’s parameter fields, including the duration of each time step (here, it is the
inverse of the !BPM control converted to units of seconds); a list of GeneratedValues (here, we are
generating the !Index used by the IndexedEventsFromData downstream), and the GeneratedGate
control, also used by the downstream IndexedEventsFromData.

The module labeled ‘Self loops do not re-gate’ in Figure S6 is responsible for the rhythmic variations in
the sound mappings; a new sound event is triggered only when the state machine enters a new state, not
on time steps where it remains in the same state.

S-8

Figure S6. Other parameters of the PushDownAutomaton include generated control values (for
example !Index), the duration of each time step, a control to morph between sets of probabilities, and
means for selecting the start state by hand or free-running the state machine.

Additional variable-to-sound-parameter mappings are specified in the TransformEventValues

labeled ‘sampleAndHold’ in Figure S7. For example, !Amp (which controls the loudness of the sound) is
rewritten to depend on !AmpDB (which in turn, depends on the computed Entropy column negated):

{!Gate sampleAndHold: (!AmpDB * !AmpDB.dev) dB}

The stereo !Spread and !Brightness (modulation index) controls are both mapped to the [0,1]-
normalized value of Entropy.

The module labeled ‘harmonic spectrum’ in Figure S7 is a meta-module called a Replicator that
creates a mix of multiple copies of the signal flow chain to its left. In effect, this is creating a pool of
sound generators, each of which can be started before the previous sound event has expired, allowing the
decay of the previous sound event to overlap with the attack of a new sound event.

The lower branch, labeled ‘ww displays’ in Figure S7, is purely for graphic display generation. This is
where the normalized Entropy is plotted against the normalized Energy and composited with the mirror of
the Entropy to create the gray and black, funnel-shaped trace in the display.

3.2 Creation of the Coin Toss Sonifications The sonification for the coin-toss question in the homework
was produced using the Noise object in Kyma to generate a stream of random numbers. On each coin toss,
the current output of the noise generator is sampled and held, and its sign {-1, 1} is used to modulate the
frequency of an amplitude-enveloped oscillator whose envelope is triggered with each coin toss. To create
an unfair coin, we shift the mean of the white noise up or down. For the homework video, we used
discrete mean values from 1 to -1 in steps of 0.2: {1, 0.8, 0.6, … 0, … -0.2, -0.4, … -1}.

3.3 Using sound to track the formation of native vs. non-native bonds In Video S1.9, a sound event is
triggered each time the state changes. States corresponding to conformations where no bonds are formed
are heard as filtered noise. If a bond can form, then each bonded pair is mapped to pair of pitches (where
the positions of the beads in the chain are mapped to scale steps). A native bond triggers a pair of
synthesized plucked strings in the right channel. A non-native bond triggers a pair of violin pizzicato

Figure S7. A TransformEventValues showing additional mappings and a sample-and-hold to hold the
parameter values stable if a new !Gate arrives prior to the expiration of the current sound event.

S-9

https://youtu.be/SBwr7ScTg9w&vq=hd1080

samples one octave higher on the left channel. The background sound is narrow-band-pass filtered noise
centered at a pitch that corresponds to the energy level of the current state:

 !energyBand * 12 nn + 55 nn

where !energyBand is in the range of [0, 2.5], 55 nn corresponds to the pitch 3rd octave g, and 12 nn
specifies that the range is 12 half steps (one octave).

The bead’s position in the chain corresponds to the scale step of a major scale based on G, so the scale
steps 1 through 7 correspond to pitch classes: g a b c d e f#. Native bonds 1-6, 2-5, 4-9, 5-8 correspond to
the pitch dyads: g-e, a-d, c-a, d-g, and non-native bonds 1-4, 3-6, 4-7, 6-9 correspond to pitch dyads: g-c,
b-e, c-f#, e-a

3.4 Mapping each state to a percussive sample with pitch offset In Video 1.12, entering a new state
triggers a percussive sample whose relative pitch is determined by the energy level, offset to assign a
unique pitch to each state at the same energy level.

3.5 Others For more sound examples, see the videos in Playlist S1.7, Playlist S1.8, and Playlist S1.20.

S-10

https://youtu.be/_FZsi1Ibziw&vq=hd1080
https://youtube.com/playlist?list=PLH4h_bmmkiMsC_82VMj-EiJHxbc1BA1IH&vq=hd1080
https://www.youtube.com/playlist?list=PLH4h_bmmkiMuSxL-WLMnnsMhSXKtJmwCE&vq=hd1080
https://www.youtube.com/playlist?list=PLH4h_bmmkiMsvMiRY87vDaohzUP-7ryli&vq=hd1080

4. Example homework and solutions
Sample homework assignment: Protein Folding Sonification

Answers are shown after the “A:”

On this homework, you’ll watch animations of Monte Carlo dynamics as an approximation of
folding dynamics to answer questions. Each YouTube video [see SI section 1] is a data-driven
visualization accompanied by a data-driven sonification (soundtrack) of an underlying lattice
model.

Note: On YouTube, watch the sonified videos ‘full screen’ using the icon. Set to “HD” and control
“playback speed” using the icon to get a sharp video at the speed you want. Use headphones for best
sound quality. The videos are usually longer than needed to find the right answer, so watch until you
think you have the answer.

a. (2 pts) As a simple example, watch and listen to sonification of a coin toss at Fair and unfair
coin tosses. Each toss is a tone whose pitch is high for Heads and low for Tails, a Fair coin is
5:5. Then listen to ‘UnknownCoin’, and answer: Is it ‘Fair’, biased towards ‘Tails’, or biased
towards ‘Heads’?

A: Biased towards Tails [The bias is 2:8 towards low pitch]

b. (4+4 pts) If a coin is tossed only 10 times, histogram the probability that it came out 10:0,
9:1, … 5:5, … 1:9, or 0:10. With just 10 tosses, how many excess tails or heads are needed
before you can say with ≥90% certainty that a coin is unfair?

A:	 There’s only 1 way of making it come out 10:0; there are 10 ways of making it come out 9:1
(e.g. THHHHHHHHH, HTHHHHHHHH etc.); there are 10.9/2! ways of distributing 8:2
(There are 10 places to put the first T, 9 places for the second, and the 2! removes the
degeneracy of e.g. flipping the two T in HTHTHHHHHH, which is the same toss sequence);
10.9.8/3! for 7:3, and generally 10!/(10-T)!/T!, with a similar formula with H replacing T
past the 5:5 point. So you get for the number of distinct arrangements 1:10:45:120:210:252:
and back to 1. Normalizing by the sum =210=1024 of all possible arrangements to get
probability, and histogramming.

Now to the certainty: you sum the probability at the edges (excess tails or heads), until you
get >10% total; the step just before that means you can’t be ≥90% sure that random chance
did not give you the asymmetry. So, the probability of 10:0 and 0:10 adds up to
2.0.000976562≈0.20%. For 9:1 and 1:9, the probability is 2*0.00976562≈1.95%, totaling

S-11

https://youtu.be/zGcPIZy_mnI
https://youtu.be/zGcPIZy_mnI
https://youtu.be/e8yeLEX14lk

2.15% so far. For 8:2 and 2:8, it’s ≈8.79%, bringing the total to ≈10.94%. That would be
already <90% certain. So to be ≥90% sure (in fact, about 97.85% sure), you need to see a
10:0, 0:10, 1:9 or 9:1. Anything less asymmetrical in 10 tosses could be random with <90%
certainty that it’s not random. So don’t get too excited if you toss a coin 10 times and get 8
tails.

c. (1+2 pts) Now we are ready to watch and hear dynamics in a folding funnel. Watch and play
the following three examples, discussed in class: ‘HairpinHighT,’ ‘HairpinTm’ and
‘HairpinLowT.’ Here an RNA or peptide hairpin can form by making a hydrophobic contact
between beads 2 and 5 and a hydrophilic contact between beads 1 and 6. Tm is the folding
temperature where the concentration of the folded state at the bottom of the funnel equals
the concentration of the unfolded state = ensemble of unfolded structures. Visually, does this
system have traps (i.e. one must go up in enthalpy to escape the trap before one can fold)?
How many?

A:	 Yes. Two. [The two microstates that lie two enthalpy layers up from the bottom of the funnel
can only be escaped going upwards in enthalpy; the right one was not visited very often, the
left one was - random statistics!]

d. (2 pts) Now listen to ‘HairpinUnknown’ (without the visualization). Is T>Tm, T≈Tm or T<Tm
in this example?

A:	 T>Tm [T is even higher than in the T>Tm example]

e. (1+2+4 pts) Next, watch the visualization and sonification ‘WWlattice,’ as the WW domain
folds and unfolds to/from a triple-stranded beta sheet at the bottom of the folding funnel.
Next to the funnel you will see the structures displayed as they are sampled by the Monte
Carlo pseudo-kinetics, as well as an “oscilloscope display” of the radius of gyration Rg;
deeper ‘’dongs in the sonification mean smaller Rg. Is the ground state (folded state) the
only one with small Rg (3.464 in reduced units)? If not, how many equally compact ‘traps’
or ‘intermediates’ are there? Draw them out. [Hint: listening for the same deep ‘dong’ as the
folded state, pausing YouTube and using the ‘,’ (<) and ‘.’ (>) to move one frame back/
forward may make it easier to find traps than using the visuals, although that also works.]

A:	 No. There are 4 equally compact misfolded traps (all in the third enthalpy level from the top)
or 5 compact states total, including the native state shown first:

S-12

https://youtu.be/omCV7lQNa2Y
https://youtu.be/dPGOhqa2UD8
https://youtu.be/RvDSre0ZyR0
https://youtu.be/R-EWEZawxvk
https://youtu.be/FWThei-IGzw

	 If you counted traps #2 and #3, or traps #4 and #5 above as the same trap, you get full credit
also: the N and C termini in WW domain are distinct, but the simulation does not label
them, so pairs of traps with the termini exchanged look like rotated versions of one another,
although they are different.

f. (3 pts) What could you add to the lattice model to get the simulation closer to real-life? Give
three examples.

A: Add a third dimension to the lattice; allow for more than 2 types of beads with different
pairwise interaction strengths for each bead; allow for 0- or 1-bead sidechains to distinguish
small from large residues; make the angles continuous instead of 90° hops; you could include
solvent degrees of freedom, for example by Brownian dynamics (Zaida (Zan) Luthey-Schulten’s
lectures) or by including solvent particles; other improvements are of course possible, and will
also receive credit.

Optional: For an extra credit, listen to WW-lattice native vs non-native bonds. What observations
can you make about the dynamics of this folding kinetics model based on sonification in this
clip? (One extra point for each of up to three observations.)

A: Some examples: energy is sonified by a deeper tone for lower energy; fully extended or
solvate structures have a swishy sound to identify them.

S-13

https://youtu.be/SBwr7ScTg9w

5. Survey instruments used in the PHY 498 and MUS 208 courses to assess student response

a) PHYS 498 anonymous student survey:

1. I am a... (fill in grad/undergrad and major)

2. How was the speed of the lectures? (Too slow/Just right/Too fast)

3. How was the difficulty of the material presented? (Too hard/Just right/Too easy)

4. What was the most interesting thing you learned from the lectures? (Brief open-ended text answer)

5. What are you still confused about with regard to topics covered in Dr. Gruebele's lectures? (Brief open-
ended text answer)

6. Have you ‘heard’ data (sonification) before this homework, in addition to ’seeing' data (visualization)?
(Yes/No)

7. A chain of amino acids always goes through the same pathway when transitioning from the unfolded to
the native state? (Yes/No)

8. Which part of problem (3) had the clearest and most informative video? (of abcdefg)

9. Which part of problem (3) had the most difficult to follow video? (of abcdefg)

10. How likely are you to incorporate sonification in your own research? (1=very likely, 5=very unlikely)

11. Do you have any additional comments? (Brief open-ended text answer)

This instrument is to be administered to students who participated in sonification lectures. The results will
be used in an educational research publication only in an aggregate manner, such as bar graphs of answer
distribution, or brief quotes from open-ended questions where all identifiers have been removed, such as
“Sonification was really interesting.” or “Sonification did not help me with the visualizations.”

b) PHYS 498 homework results:

In addition, we will analyze statistics of the homework results, such as fraction of correct/wrong answers
on each question. Only aggregate statistics will be presented, no individual homework information.

c) PHYS 498 student profile questions:

1. Are you undergraduate or graduate student?

2. What is your major (i.e. Physics?), and in what year are you in?

3. If you are an undergraduate, what level of physics courses have you taken? Have you taken a statistical
mechanics course?

4. What, if any, biology have you had in high school, college

5. Have you done any biophysics-related research?

6. Anything else relevant to the course, or anything things you want to get out of taking the course?

The answers to these questions will be reported only in aggregate form, that is, “what fraction of students
in the class were physics, biophysics or chemistry majors” or “X% of students has a biology class in high
school or college.”

d) MUS 208 data sonification anonymous questions:

1. Have you ‘heard’ data (sonification) before this class, in addition to ’seeing’ data (visualization)? Y/N

S-14

2. Unknown coin: is it fair: Biased towards heads (higher pitch)? Or biased towards tails (lower pitch)?

10 (heads): 0 (tails) 
9:1 
8:2 
7:3 
6:4 
5:5 
4:6 
3:7 
2:8 
1:0

3. Does a chain of amino acids always to through the same pathway when transitioning from the unfolded
to the native state? Y/N

4. Which part of problem (3) had the clearest and most informative video?

a (Coin toss) 
b (Coin toss unknown) 
c (Hairpin high/low temperature) 
d (Hairpin unknown temperature) 
e (WW lattice) 
f (Rg vs. time) 
g (uRg vs. oRg)

5. Which part of problem (3) had the most difficult to follow video?

a 
b 
c 
d 
e 
f 
g

6. How likely are you to try sonification (or data-driven music) yourself?

Not at all 
Probably not 
Maybe 
I’m interested 
Definitely

S-15

	Supporting Information

